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For the last ten years, the leading position in the field of nonlinear oscillations has 
essentially fluctuated1 *). It appears that this will remain the present condition until such 
time as the research area expands further. Despite the pioneer works of B. van der Pol, E. 
Appleton and other contributors, this research arena remains poorly developed and little 
known; however, it is now possible to safely say, that the necessity of application of the 
nonlinear theory and nonlinear treatment for the diversity of oscillating problems has 
been successfully applied in various areas of modern technology, and has received wide 
recognition not only in scientific, but also in engineering circles. Alongside wireless and 
acoustics research, the theory of nonlinear oscillations has received the rights of 
citizenship in the labors of the electrical engineer, the aircraft technician, as well as in the 
technology of automatic control, which will be especially emphasized in this speech. 
 
This expansion of the scope of the theory of nonlinear oscillations is the brightest feature 
of practical Soviet research over the past several years. Undoubtedly, it is a theoretical 
branch that is at our disposal and has become more perfect and effective in comparison 
with the initial efforts back in 1935, but it does not in essence contain any new ideas. 
 
Let us briefly enumerate the basic elements of this topic. 
 
1 – The qualitative (topological) theory of the differential equations created by H. 
Poincare2, and the geometrical images provided by him (in phase space) of the various 
types of movements of dynamic systems, as, for example, the limit cycle representing 
established oscillations3. Research on auto-oscillations by means of this theory has led to 
new mathematical concepts of « structurally stable systems »4. 
 
2 – The theory of a series expansion based on a small parameter, developed in connection 
with problems of celestial mechanics (Euler, Lagrange, Poisson, Tisseran,  
 
*) For a review of the research works completed up to 1935 see for example1 
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Liendshtedt, Poincare and so on), which allows one to calculate a periodic driving 
function, together with a method of slowly varying factors (or via van der Pol’s method5, 
which was the first to be applied to radio physical problems). 
 
These quantitative methods applied in their most simple form are the most important for a 
case in radio physics of almost sinusoidal oscillations. 
 
3 – The methods of research in regards to the stability of mechanically driven systems 
based on the works of Poincare and Lyapunov6,7. 
 
4 – The methods of reduction, in which the nonlinear associations entering into a problem 
(that consists of the performance of vacuum tubes, servomotors and so on) approximates 
a problem that is reduced by a series of rectilinear segments to “seaming”, by which 
means that the certain conditions of the continuity, that includes in its solutions various 
systems of simple equations, are equal in various parts of its phase space. 
 
This method has appeared especially effective for treatment of systems in which the 
mechanical driving cannot be considered approximately sinusoidal; such systems 
represent a special interest for the theory and applications of automatic control. 
 
5 – About this last idea we will be discussing is not completely unimportant – it 
necessitates new physical language, and adequately describes properties of nonlinear 
systems that are absolutely distinct from the usual linear languages; this new nonlinear 
language was developed simultaneously when physicists seized upon the just enumerated 
mathematical methods and created, through their efforts, obviously new representations 
corresponding to their goals. 
 

POORLY DEFINED NONLINEAR SYSTEMS 
 

Let us remind readers first of all about some outcomes stated in the 1935 report. 
Emanating from the existence of a book entitled « the periodic solutions of the second 
type » by Poincare6, with additional detailed discussions about phase, multiple phases, 
and the operating force, authored by L.I. Mandelstam and one of us (N.D. Papaleksi), we 
have come to the conclusion that the possibility of excitation and maintaining a certain 
working condition in the recycled system while being under an operation with harmonic 
EMF’s, the multiple-phase oscillations are corresponding to a solution of the second type. 
The theory that these appearances have enveloped themselves in are not only 
characteristic of « a resonance of the second type », taking place in non-self-excited 
recycled systems, but also within many appearances observed in the self-excited system 
under one operational EMF or several harmonic EMF’s. 
 
Here, there are also additional concerns: synchronization on the overtone7, an appearance 
of the suppression of oscillations,8,9 auto-parametric or fractional resonances,10  
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combinatory resonances11,12 as well as an appearance of the so-called « asynchronous 
excitation » 9,13,14,15. 
 
These same authors had for a lengthy period of time been developing the theory of parametrical 
generation of oscillations (by means of a periodic modification of parameters—capacity or self-
induction) in systems with small depths of modulation and small nonlinearity indicators16 and it 
also became clear there were further numerous examples with many additional characteristic 
appearances that were taking place via ion mode by the mechanical deriving of electrical energy. 
 
By means of a combination specified above that highlighted quantitative and qualitative 
problem solving methods, including the concern for the behavior of regenerative systems 
both non-excited, and self-excited under an exterior operation with harmonic EMF’s, 
these problems and methods have been investigated but there are issues that have 
remained that have not become satisfactorily resolved. An example of this in particular, 
regards a question at issue on the existence at synchronization on a threshold for an 
amplitude exterior to harmonic EMF’s.  
 
In all of the enumerated problems for the application of a method of perturbations or 
methods of small parameters as well as the van der Pol method, being applied in this 
supposition, one can say that in « a zero approximation » the considered systems are 
linear and conservative, i.e., that in their nonlinear terms, for these specific differential 
equations the more significant ones are the linear and not the conservative terms 
(damping) as well as the terms containing periodic parameters, when these are small 
enough. 
 
Let’s consider as an example a tank circuit with a variable capacitance varying under the 
law 
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We consider these magnitudes small – on the order of a smallness µ. According to 
Poincare6, a required periodic solution of the equation (2) will differ little from one of the 
solutions of the equation  

0=+ qq&&             (3) 
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and its result will present false indications with regards to an aspect of some on degrees 
m, and the term with a zero index that would be one of the solutions of these equations 
(3) which we therefore name a « zero » as the initial solution. 
 
Such a treatment has allowed us to discover a series of new system properties with 
periodically varying parameters, for example, with appearances that in parametrically 
connected systems where the research has led to the creation of a new type of motor with 
a slide control for the number of revolutions17; that concern the researchers here; also, the 
second parametrical resonance for a spectrum of frequencies 1:1 18; additionally, the 
appearances of parametrical combinational regeneration19,20,21 which display the 
parametrical resonances that are taking place in connected systems22. 
 
However, for important practical cases, for example the parametrical generation of 
alternating currents, the developed theory appeared to be, in a quantitative sense, 
insufficient. The fact of the matter is that the magnitude of the potential, or EMF, of 
parametrical generators grows with the magnitude of the depth of modulation of the 
parameter and practically neither the depth of modulation of the parameter, or damping 
detuning can be measured, as it is impossible to consider such a small number, 
and hence it is impossible to consider also Tomsonovskiy’s initial system, i.e., to take the 
initial sinusoidal solution for the case of a system with one degree of freedom, or the sum 
of sinusoids for a system with many degrees of freedom. 

2
0
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It was condensed several years ago by L.I. Mandelstam, during the development with 
reference to these cases of reduced methodical forms of small parameters where it is quite 
naturally the initial approximations for the periodic solution of some linear differential 
equation with periodic factors. 
 
Let’s return to the case of the oscillating system considered above with periodically 
varying capacity. The equation system (1) can be presented in such an appearance 
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and the magnitude γ, defining also the nonlinearity of the system, which is also small, 
then, following Poincare, it is possible to show, that the effort to approach the periodic 
solution of the equation (4) will lie near a straightforward periodic solution of the 
equation (5). 
 
During L.I. Mandelstam’s final months, he developed the theory of the approximate 
solution of a system of differential equations grounded on just this stated idea of periodic 
factors for any depths of modulation and small nonlinearity23. This theory was then 
applied to concrete cases of parametrically generating alternating currents. 
 
Let us also mention the works of G.S. Gorelick24 and S.M. Rytov25 about non-stationary 
processes in systems with periodically varying parameters, where it has also spread to 
general applications in such systems where a method of slowly varying factors, such as 
the method of van der Pol, can be applied. 
 
Along with those cases where parameters vary with phase, the comparisons are basically 
under an order of magnitude with the average characteristic phases of the system, in 
particular those cases when the phase of the modification of the parameters is very great 
and that has been deeply analyzed also. This special aspect of action gives rise to 
oscillations which are usually identified as modulated. Following closely the definition of 
modulated oscillation simply approximated as the oscillation slowly drifting away from 
the harmonic, S.M. Rytov has given some common treatments of both kinematic as well 
as dynamic modulation problems26. 
 
In this research it is possible to note two moments. 
 
1. The method of perturbations is applied sequentially to problems of modulation. The 
small parameter µ is introduced thus as a factor at independent variable t. Modulated 
oscillation, is noted in the form of 
 

( ) ( )[ ] ωµµ µϕω <<= + ,ttietAs  
 

Thus we have
dt
dand

dt
dA ϕ  which are on the order of µ, i.e. ϕandA are especially close to 

a constant rather than being less than µ. Various problems in regards to systems with 
modulated parameters have led to the equations whose factors vary from t through µt. For 
a solution of such problems the method of slow perturbations was developed, in which 
the zero approximation is similar to a quasi-stationary result that relates to an 
approximate conjugate solution. This last example represents a solution of the stationary 
case that is set with (µ = 0), but additionally with the replacement of arbitrary constants 
of the slow functions t. This particular aspect of these functions is defined from the 
analysis of the subsequent approximations, and the modes serving for this purpose, are 
various, depending on the character of a problem. With reference to  
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the nonlinear systems close to Tomasonovsky, the described procedure repeats, certainly, 
if one applies the van der Pol method, but for the linear modulated systems the aspect of a 
zero approximation is established differently (from the conditions of an orthogonality). 
 
The method of measuring (slow but not necessarily small) perturbations essentially 
supplements the usual method of measuring (small and remaining arbitrary) 
perturbations. 
 
2. There is a rather natural generalization given about the concept of modulation, i.e., the 
slow deviation from sinusoidality, relating to spatial and existential (wave) problems. As 
to a problem there that corresponds to the differential equations, quotients and 
derivatives, in which the factors or the boundary conditions that hold parameters that are 
dependent upon µx, µy, µz and µt. All of these outcomes are possible, certainly, and 
would be dependent upon the various orders of smallness on the one or several of these 
coordinates. 
 
In relation to the wave equation, this statement of the question also envelops the usual 
passage of the approximation of geometrical optics (if the factor in most of the equations 
is spatially modulated, i.e., a velocity distribution), and with its diffraction impacting on 
enough smooth structures (if boundary conditions are modulated spatially). Application 
of the slow perturbations method to the Maxwell’s equations (in the case of an 
inhomogeneous medium) has allowed us to obtain an approximation for the geometrical 
optics, alongside with the conservation law of a light beam, as well as the law of a 
modification of polarization along a ray, namely: 

Tds
d 1

=
ϕ  

where ϕ - is the angle between an electric vector and a principal normal to a ray, s – is a 
length of an arc measured along the ray, and T – is the radius of torsion of the ray. 
 
Let us now pass on to another group of theoretical research concerning applications of the 
method of the small parameter.  
 
Recently it has appeared possible to expand the circle problem, solved by this method, 
with the introduction of specific mathematical formulas to apply to the statement of some 
problems of not only « greater » magnitudes of the zero order (µ0 = 1) and « small » 
magnitudes of the positive order, but also « very much greater » magnitudes of negative 
orders (1/µ, 1/µ2, etc.). From a formal aspect it does not change the method for a small 
parameter, but from the physical point of view of the operation of « very much greater » 
magnitudes, it is not trivial and in some cases renders useful results. 
 
The fact of the matter is that the physical reasons of greater frequency suggest to us that 
the interconnectedness of the relations is on the order of several magnitudes. It is 
certainly a question about which magnitudes to consider constant as µ → 0, i.e. to accept 
for magnitudes of zero order is a matter of consequence for any   
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agreements. Each agreement of such kind is possible to have a certain equivalent choice 
regarding a specific considered aspect of the system and also have a zero approximation 
(µ = 0). Therefore all similar samplings, being formally equivalent to each other, are not 
equivalent where discussing a physical model is concerned27. 
 
In this way it was possible to supply data points and resolve a problem about stabilization 
of frequencies of a vacuum tube generator by means of stabilizers (using a quartz 
oscillator, a tuning fork, as well as a volumetric resonator). 
 
The vacuum tube generator connected with the quartz oscillator behaves essentially 
differently, than the generator with its two usual contours, both at the strong and at the 
weak connection. Thus already at most the frequency control in a method of small 
parameter it is necessary for a statement of the problem to reflect from the very beginning 
prominent features of quartz (a contour of the 2nd order), distinguishing it from the usual 
contour (1st order). Such a singularity of the stabilizer is of extremely great 
value 22 /CL . If one is to accept 22 /CL ~ µ−1, in view of 22 /CL ~ 1, it turns out:  
L2 ∼ µ−1, C2 ∼ µ, i.e. the inductance of quartz appears to have a « very big » magnitude. 
Owing to the equations for currents I1 and I2 (accordingly in a contour of the generator 
(and, in an equivalent contour for quartz) becomes*) 
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The prominent feature exhibited by equation (6) is caused by the introduction of L2 = 1/µ, 
where this is an asymmetry of orders of smallness not only by decrements, but also via 
connection factors. This circumstance enables the possibility to construct by means of a 
small parameter method, the strict nonlinear theory of frequency control**). Besides, this 
turns out to be the somewhat obvious picture of a stabilization process. Namely, if we 
consider the terms of the equations in (6) which are not containing µ, (thus having a zero 
approximation) we receive two independent conservative linear oscillators, both with 
identical frequency. At the accounting of terms with µ (to the first approximation) we 
have the self excited generator, which is almost on a resonance (detuning µ∆) operates 
with a driving force - , i.e. this turns out to be a problem about coherence. A radiant 21I&&µχ
 

 
 

 
 
*) Here too we introduce dimensionless time τ = ωt, where 22/1 CL=ω is the quartz frequency. 

Decrements and the factors of connection µx2
2

1, ϑµµϑ 1 = µ/L1, µx2 = M/L2 have different orders, as do 
resistances R1, R2 where the order µ for a coefficient for mutual induction is M ~ µ, (L1 ∼ 1, L2 ∼ 1/µ). 

∗∗)This theory is developed and quantitatively confirmed from experimental experience for the 
basic schemes of stabilization (tightenings and oscillators) in28. Except for that in29, the small parameter 
method it is developed in a general view for systems with two degrees of freedom and with those equations 
that contain terms of various orders of smallness.   
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with this force impacts the second oscillator as before even if there are independent and 
conservative factors indicated. At last, to account for the terms of the second order, 
simultaneously, we would enter some damping into the quartz, as well as supporting 
oscillations in the quartz through action from the generator. Thus this interaction is 
asymmetric: the generator acts on the quartz very poorly (~ µ2) according to a small 
decrement of quartz, and quartz acts on the generator equally as poorly (~µ) and 
consequently seizes (Editor’s note: phase locks) when near a resonance level point. 
 
The precise language sense of small parameter gains is also a concept that is conditional 
with frequency control, namely: it is in such a self-oscillatory condition at which, as a 
result de-tunings of a contour by way of µ, the frequency deviates from a constant value 
not more strongly, than by way of µ2.   
 
The expansion of the method of small parameters briefly described here has appeared 
useful, but not only with problems about stabilization of frequencies. As an example, it is 
possible to specify the alternating current theory of generators where the assumption of « 
very big » inductance stators also allows us to finish all the calculations, thus preserving 
all of the features of interest of this considered example. 
 
The method of small parameters also has been applied to a solution of some problems, 
especially those concerning distributed parameter systems (nonlinear problems in partial 
derivatives) which have gained special value in connection with such successes, reached 
in the field of technology in regards to very high frequencies30,31,32. 
 

STRONG NONLINEAR SYSTEMS 
 
One of the basic tendencies of the research developments discussed here consists of, 
having begun with problems of radio-physics, those achievements and application 
protocols that were spread to an area of endeavor which at first sight seems rather far 
from it like the field theory of automatic control. This theory represents a wide field for 
the application and developments of physical ideas as well as the mathematical methods 
– which have become usual for radio-physics – to be engaged in by research into auto-
oscillations. In spite of the great value which has been gained with efforts on relaxation 
oscillations, the radio-physicist, for abundantly clear reasons, saw infinitely more in its 
purpose: he is interested in almost sinusoidal oscillations generated by poorly defined 
nonlinear systems. As already mentioned above, the theory of automatic control mostly 
deals with strongly nonlinear systems in which auto-oscillations, if they exist, are as 
essential as they are non-sinusoidal. 
 
Let us remind ourselves all over again of the simple example taken from the area of 
radio-physics33, a method of « seaming » the trajectories in a phase space, about which 
we had already made mention of in the introduction. After that we can briefly consider 
some final works that are not concerned with linear problems for automatic regulating.    
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To avoid distorting the historical perspective, the following is a necessary criticism 
beforehand. Ten years prior to the origin of wireless, the French engineer Leaute34, was 
studying auto-oscillations in some device of automatic control, and actually investigated 
the phase space of this device from which he had traced its integral curves and limit 
cycles (but not having given it this labeling: although it was extant, Leaute was not 
familiar with the work of Poincare, who, a little bit earlier, had published about limit 
cycles for the first time it ever appeared in mathematics). For reasons about which we 
here will not speak, the remarkable works of Leaute have almost been completely 
forgotten. Research about this topic will be brief in this speech, representing itself a new 
application of methods used in radio-physics, which are at the same time a demonstration 
of the persistence of the works of Leaute. 
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The equation (8) can be interpreted as a mathematical expression of the discussion of the 
Leaute method (Fig 3). This equation expresses the point-wise transformation of a 
straight line. The thick straight line corresponds to the equation (8) and the thin one 
makes an angle of 45 degrees with the axes of the coordinates. It is easy to see that any 

of any of the series that aspire to a final limit will have the form: ∞→nandI0 nI

2/
*

1 kT
s

e
II −−

=  

It is those « amplitudes » of the limit cycle that represent the established oscillations on a 
phase plane *). 
 
The auto-oscillations arising in many automatic control devices can be studied similarly.  

Let us consider an example from the 
work of Andronov, Bautin and 
Gorelick35, concerning, though strongly 
simplified, the quite modern problem 
although with a few differing aspects 
that echoes the concepts described in 
Leaute’s problem. Atmospheric matter 
(Editor’s note: air) passes through the 
airscrew, which has an automatically 
controlled variable pitch. The 
servomotor rotates with an angular 
velocity ω according to the equation 
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at a stationary condition ( 0,0 )== ϕω && by virtue of equation (10) the function F(ξ) = 0 or 
 ω = ωn by virtue of equation (9) where ϕ consequently and by force of draft becomes a 
function of λ. The corresponding choice of the parameter’s values guarantees in this case 
a stability in regards to this stationary condition. 
 
This ideal is never carried out however. First, the tachometer possesses inertia and 
friction. Second, the servomotor possesses a dead zone. Function F(ξ)  can have, for 
example, an aspect as specified in Figure 4. These circumstances can change the 
properties of the system completely. Its behavior has undergone extensive research in 
considered work at the following supposition: it is possible to neglect the inertia of, but 
not the friction of, a tachometer. 
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The equation (10) can be, according to Figure 4, noted in the form of 
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We can now write the differential equations 
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By virtue of the equation series in (II) the nonlinear system as described in (I) has led to 
linear versions via the previously described equations, which are real in the various areas 
of phase space. System (I) and the condition of the x, y, z, coordinates on the continuity 
boundaries of these areas completely define the driving function via the represented 
points. 
 
In Figure 6 a thin line segment of a typical trajectory is shown. It looks like a spiral; we have 
illustrated here a driving oscillation. While the tachometer is displaced, the representing point is 
on H or H’; at the stopping of the servomotor it moves on a straight line when the servomotor is 
in operation on a curve. When angular acceleration changes sign, the tachometer – because of 
friction – for an instant stops, the representing point interferes in a stratum G and describes an arc 
in a plane x=const. Then the tachometer again comes into action, and the representing point again 
moves on H’ or H. 
 
It is necessary to know, whether the spiral is displaced or torn and whether there are also limit 
cycles. This problem is solved by means of the calculations, which have similar approaches to 
ones that have been made by us for the vacuum tube generator. Through this means 
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the phase space – becomes three-dimensional, but it is so deteriorated that all trajectories 
intersect properly with the chosen ray plane H or H’, for example 

ray 
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transformation of this ray to its utmost, certainly (I) and (II) and conditions of the « 
seaming » of trajectories 
being satisfied. 
 
The calculations show that 
the oscillations damp out at 
any entry conditions, or as
(Figure 6) there are two limit 
cycles – one steady and the 
second, of smaller size that is 
unstable (they are shown by 
the thick lines). In the second 
case it would damp out only 
weak enough perturbations. 
In Figure 7 it is shown in th
parameter space 

 in 

e 
( )A,, 0ψα in 

which such auto-oscillations 
are possible. It is concluded 
between a plane of 00 =ψ   
and a cylindrical surface [A], 
forming which axes are 
parallel to A and a surface [α] containing an axis A. It is 
oscillations or a diminution of k or N or the magnificatio
 
Andronov, Bautin, and Gorelick’s other work,36 in the m
concerning the large class of devices relating to automat
understanding of the case just considered. Of the key poi
here are a few to note: to which the velocity of the servo
device measuring the governed magnitude (for example 
presented for the first time by the French engineer Farko
displacement of the measuring device and the servomoto
more effectively contend with occasions of instability. T
appeared possible to plot inside these boundary space pa
stability of a stationary condition, on the one hand, and a
have auto-oscillations with another, have undergone furt
servomotor has linear performance 
 
 
 

Figure 6
always possible to save auto-
n of a dead zone. 

ain, highlighted the problem 
ic control and the general 
nts to know about these systems, 
motor copes not only with the 
a tachometer), but also, as 
, a linear combination of both the 
r that allows the equipment to 
wo cases for which it has 
rameters between areas of 
reas in which it is possible to 
her research: a case where the 



 348

 
N.D. Papaleksi, A.A. Andronov, G.S. Gorelick, S.M. Rytov 

 
and a case of the servomotor possessing a constant velocity via an absolute value and a 
dead zone. 
 
Till now, it was a question of problems in which a phase space had so simple an 
appearance, though also three-dimensional, that its research was reduced to a point-wise 
transformation of a line and to a line. However, the large number of very important 
problems leads to « full » three-dimensional phase spaces and that to understand during 
integral curves, it is necessary to subject 
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having formulated what we now call the oscillation conditions of self-excitation. There exists an 
immediate continuity between the research efforts of Maxwell about the conditions of self-
excitation of auto-oscillations and the later, widely known researches of Routh38 about the 
stability of driving functions to achieve such oscillations. 
 
Wischnegradski was interested in the problems of regulating oscillations not only from the 
vantage point of the scientist, but also that of the engineer. Wischnegradski, unlike Maxwell, 
(who was not familiar with Wischnegradski’s memoir39), finally, in 1886, described the problem 
of direct regulating in that aspect, a technique in which he was singularly interested in at the time. 
Wischnegradski’s problem remains, even to this day, one of the primary problems of regulatory 
theory. 
 
Let’s consider the machine, for example one driven by steam, in which the moving moment P 
depends on position y. A governing mechanism and the moment of resistance Q is a constant: 
 

( ) QyPI −=ω&           (12) 
 

The governing mechanism driven by a tachometer, where inertia and friction cannot be neglected: 
 

( ) ( )Nxfkxxm
xy

ωωβ
α

−=++
=

&&&

,
          (13) 

 
Friction develops from viscous friction and general friction following Coloumb’s law. The 
stationary condition 

)(xf &

( 0,0 == x&& )ω can be steady or unstable. It is unstable, in particular, when 
oscillations are caused by inertia and the elasticity of the tachometer, increase contrary to friction 
owing to interaction between the tachometer and the machine. It is required to discover the 
conditions of stability in connection with these pieces of equipment. Wischnegradski’s problem is 
succinctly described and presented by these equations. This problem is definitely nonlinear- in 
both description and solution. 
 
Wischnegradski in his well known memoir has himself given a solution for the linear case, 
when ( ) xxf && γ= . For a special case, when viscous friction is absent, a series of outcomes has 
been described by Lecornu40, Zhukovskiy41, and Mises42. We name this case the Mises’ problem. 
As to Wischnegradski’s problem, it remains unsolved. 
 
This subsequently led to the examination of the three-dimensional phase space with special 
emphasis on the examination of dot transformation of a plane in a plane, where Andronov and 
Maier had a new opportunity to provide the solutions to Mises’ problems43, but also have 
provided a pathway mathematically to completely solve Wischnegradski’s problem as well44. 
 
The parameter space which at an appropriate selective point can be led to be two dimensional, 
and broken into three fields whose boundaries were possible to be calculated: 1) a field in which 
the system spires to be stationary as to its condition, it can be at any initial 
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condition; 2) a field, in which the system is unlimited leaves from a stationary condition 
at any starting condition; 3) a field, depending on the staring conditions, in which the 
system comes nearer to a stationary condition, or from it leaves. It has appeared also 
possible to calculate for each value of parameters belonging to this peak field 
perturbation, with which else the automatic control device can consult. 
 
Let’s specify one more three-dimensional nonlinear problem investigated via the method 
of transformation of a plane in a plane; the problem about stabilization on a course by an 
aircraft via auto-pilot45. 
 
Let the angles describing the position of the aircraft and its rudder, be ϕ and η then we 
can write the equations in the form of 
  

( )ψηηϕϕ FNM =−=+ &&& ;  
 

Where M and N –positive constants and F(ψ)−the characteristic of the servomotor. It is 
supposed, that this last function is operated in a linear combination: 
 

ϕβαηϕψ &+−=  
 

where α, β − are positive constants. The servomotor differs in its constancy of velocity 
and the dead band region. The solution of this problem has shown that the parameter 
space is divided into a field in which there are auto-oscillations of the aircraft around its 
course, with the second field having feeble auto-oscillations and with the third area with 
strong auto-oscillations. 
 
Let’s give still other works concerning problems of automatic control46,47 
 
Research of the iterated transformations of the aspect 

( ) ( ),....3,2,11 =−= nxfx nn    
which is indeed playing a much greater role in this part of our review, has allowed us to 
investigate other problems about nonlinear oscillations48,49,50,51,52, and in particular, about 
those auto-oscillations of systems with distributed constants such as for example a violin 
string driven by a bow, or the Laherovskiy system driven by a vacuum tube51. (The 
problem is reduced to research of sequential transformations of values of some function, 
satisfying the wave equation, and this transformation is set by some nonlinear boundary 
conditions). To a similar given problem where Bovscherverov systems53 were 
investigated with the so-called « late feedback » of which these examples can serve: the 
echo-location of Jaques Bodin54 and the Koulikoff-Chilowsk scheme for the 
measurement of distances by means of radiowaves55. Recently a similar method was 
developed by Andronov and Gorelick that had considered a nonlinear problem about a  
resonance relating to a relativistic particle, moving inside of a cyclotron56. 
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Here the nonlinearity is caused by the dependence of the particle’s mass upon the 
(Editor’s note: relativistic) velocity. Undoubtedly, the methods of applying the theory of 
nonlinear oscillations, are fated to find a wide application in the examination of the 
movements of electrons and ions in particle accelerators, as well as playing such an 
important role in the up-to-date techniques of physical experiments, such as the electron’s 
motion in devices intended for ultra-high frequency oscillations (Editor’s note: 
magnetrons). 
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